the flow in jets with close Mach numbers My = 2.63 and 2.78 and with different nozzle geometries shows that
with an increase in the angle y (see Fig. 1), i.e., with an increase in &, the hysteresis phenomena decrease
and disappear. Conversely, a decrease in the angle y promotes the development of hysteresis. For example,
for a jet with M, = 2.54,d/D = 0.753, u = 0, and g = 8° [4] (Fig. 6; points 1 correspond to an increase in n,
and points 2 to a decrease in n) the hysteresis zone has the maximum range of expansion ratios. Thus,
hysteresis phenomena in supersonic jets essentially depend on the Mach number and the profiling of the
nozzles.
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AERODYNAMIC FORCES ACTING ON THE BLADES
OF A THREE-DIMENSIONAL ANNULAR ARRAY
WITH NONSTEADY FLOW

V. P. Ryabchenko UDC 532.5:621.22

We present a computer realization of the solution of the three-dimensional problem of the nonsteady
flow over the vane crown of an axial turbine by an irrotfational stream of an ideal incompressible fluid, based
on the vortex theory of a screw [1] and of a wing of finite span [2].

To solve this problem in [3, 4] the geomefry of a blade crown was modeled by a straight three-dimen-
sional array of plates enclosed between two planes, while in {5, 6] it was modeled by an annular array of
vanes consisting of parts of helical surfaces. In the present report we adopt the second model, which evi-
dently better describes the geometry of an actual turbine.

Because of the complexity of the algorithm suggested in [4-6], there are only individual examples of the
calculation of nonsteady aerodynamic characteristics. Below, on the basis of a simple algorithm which is a
generalization of the working method of [7] for an established flow, we analyze the influence of the three-
dimensionality of the flow on the nonsteady aerodynamic forces acting on the vanes of a round array in a
wide range of variation of the parameters of the array.

1. Let us consider a uniform stream of an ideal incompressible fluid with an axial velocity v through
one array of vanes which are rotating with a constant angular velecity w in a coaxial cylindrical channel
which is infinite in the axial direction. We assume that the vanes can undergo synchronous, steady, harmonic
vibrations of low amplitude at a frequency w; and a constant phase shift ur (4 = 20/ N, where ¢ = 0, =1,
£2,...; N is the number of vanes in the array).

We introduce cartesian (%,y, z) and cylindrical (x, r*, 6%} coordinate systems connected with the ro~
tating vane array. The x axis is directed along the axis of rotation while the y and z axes are drawn in the
plane perpendicular to it. The r* and 6* coordinates are connected with y and z by the usual equations,

y = r¥cos 6* and z = r*sin §*, where the angle 6* is reckoned in the positive direction from the y axis
(Fig. 1).

We assume that the vanes Z , (n=0,... , N~ 1) are infinitely thin and in the central position they con~
sist of parts of helical surfaces bounded in the (r*, 6*) plane by a rectangle {r{ =r* =1y, op =~ < 0% <
an+ ¥} Here ap = 2my/N; n is the number of vanes; r; and r, are the radii of the inner and outer cylin-
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ders, respectively; o — 9 and ap + ¥ are angles defining the positions of the leading and trailing edges of
the n~th vane. Within the framework of the linear theory the vortex wakes developing behind vanes owing to
the variation of the circulation with time and over the height of a vane will be modeled by surfaces Wy of
discontinuity of the tangential velocities, distributed along the stream surfaces of the undisturbed flow and
bounded in the (r*, 6*) plane by the half-sheet {r; = r* < ry, oy + § = 6* <=}. The helical surfaces Z, and
the free vortical surfaces Wy (n = 0, 1,...,N —1) will be defined by the equations

z=rmb, y =rrcos (0 - a,), z=rrsin (@ - a,), (1]

Fig. 1

where m = v/wry; r = r¥/r; is the dimensionless radial coordinate; the angle 6= 6* ~ ay,.

We will assume that the disturbed nonsteady motion of the fluid outside the vanes and the vorti cal
wakes is potential. Then the following problem arises for the determination of the potential ¢ of the dis~
turbed velocities:

{Ag = O outside Z,30dW, (rn=10,1,...,N 1),
(V‘V)(PZVV (x) ei(ﬂuni-mnt)’ = Zm .
Pl =0, [(v-V) ¢l =0 for xe=W,, limve=0, @.2)

%rf-=0for r=1andh, |ve{< oo for xeL,,

where ¥ is the vector normal to the surfaces =, and Wp; V, is the normal component of the amplitude func-
tion of the oscillation velocity of the first vane (n = 0); p is the pressure, determined by the Cauchy ~La~
grange integral; L,, is the line of the trailing edge of the n-th vane; X = (x, y, z); t is the time; j is an
imaginary unit connected only with transient processes; h = ry/r;; brackets denote a jump in the quantity
which they contain.

2. To solve the problem (1.2) we replace the vanes of the array by vortex surfaces and change from a
continuous to a discrete distribution of the vortices, by analogy with how this is done in [7] in calculating
steady flow over a vane crown. We divide a vane into N; bands in r and N, bands in ¢ and model each i-th
elementary area by a horseshoe~shaped vortex consisting of a segment of the attached vortex directed along
the r axis and having a size 26r = (h —1)/N; and with an intensity

T (1) = rag i ™

2.1

and a system of free vortices. Here Iy is a dimensionless constant which is complex with respect to j; v,
is the velocity of the undisturbed stream at the middle radius r = ry = (h + 1)/2 of the channel.

According to the Kelvin theorem, the variation in the intensity of the attached vortices is accompanied
by the coming off of the free vortices with an intensity
(s L ary ' 2.2)
LR R ‘
Here t; = t —si/vy(ri), vi(r) = Vv + w¥r*2, and sj = ryV 1;'2i + m? 9 is the curved coordinate of the stream-
line of the undisturbed flow, measured from the point (ry, 6i), where r; is the coordinate of the middle of the
segment of the i~th attached vortex; 0j is its angular coordinate. Substituting (2.1) into (2.2), we obtain
ml"l.vo

. (@t nust—-gme)
— £l jge -
‘/ m* - -r}

= (sir t) =

where g = w;ri/v is the Strouhal number. The axes of these vortices are parallel to the axes of the attached
vortices. The system of free vortices also includes two semiinfinite vortex strings coming off the ends of the
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attached vortex and located on the helical lines defined by Egs. (1.1) with r = rj= 6r. At the time t the in-
tensities of these vortex strings are I‘%’(ti) in magnitude and opposite in sign.

The coordinates of the attached vortices and of the control points, at which one determines the velocity
induced by the vortex system, are determined in the (r, 0) plane just as in [7]. If s is the number of the
band in ¢ (s = 1,...,N,;), o is the number of the band in r (6= 1,...,N;), and ! is the number of the horse-
shoe-shaped vortex, then we can introduce the numbering

l=N(s—1)+o
and determine the coordinates of the middles of the segments (rj, 67) of the attached vortices and the con-
trol points (rg7, 847 ) from the equations
rop =1 =h + 8r(l — 20), 8, = P{{0,0 = 2(s — 1)) N, — 1).
81 = ${((1,5 + 2(s — 1))/, — 1).
Using the Biot—Savart law and the equation for determining the normal to the surface of a vane at the
point (ryz, 641),

Y .
L v, =(rgp, msinBy.—mcos 8.

] m 'r:‘;l
for the normal velocity component at this point of the i~th attached vortex of the n~th vane we obtain
e l,oriej(m,taunu:c)a" o) T b cos (B, —o) rp—8r—rycos (b, —x) 2.3)
Ly i° TE o e gy i T R - - L) .
v 0ir Yol 4‘11 R T;, ity . L, --br, 0, Rr,~—8r,
where
2 sin (0 —a ) -mPBcos (B —a
il () — ry St ( U")., ": 05 (0 —u,)
mEGE -y sin” (6 —a,)
RE(r, 0) =m0 —rl, 0" — 9,005 (0 —at,); 0, - gy — 0;.

For the normal component of the velocity induced by the free vortices coming off the i-th attached vor-
tex we have

. ) 0.
5 v Ao npri—gmi; ) sy
]’/Hll‘olic( i, gmx

a:r{x) ‘ i

br—r, cos (z — ) r, = 8r —rcos(z-—2) ]

Rir, 8. x) a Rir,—br, z - J dr.  (2.4)

R )
tvr Moy Bgy) e S
4:’(‘ m= -y .

—20

Similarly, for the free vortex string belonging to the i~th horseshoe-shaped vortex and having the coordinate
r along the height of a vane, we obtain

iy
: . ‘ .t 2 2 2l 2 < ol sin (s
A e,(m,zﬂm_—;-qnmm N (=0} (m ru') cos (z—a,) - rotrsin(z—a )

o i Q_?qm.\: Ta1

i N
Uy (1'01. & 1 ’A) e - dl".
! —’ml m? -2 L3, 2)

ol Jx (2 .5)
Then the normal component of the velocity induced by the i-th horsehoe~shaped vortex at the point (rg7, 947}
has the form

R 3 N . [T [T . . N . . - n
Ve (rors B01) o tvm (s Qo) = 0 (g Bg) v (g Bype 1y - 80) — v (g Ogg, 7y — 8r) - b

However, the conditions of nonpenetration at the cylinder surfaces r = 1 and h cannot be satisfied us-
ing the vortex system under consideration. To approximately satisfy them we introducs, following [7], a sup-
plementary vortex system which is a reflection relative to the cylinders r = 1 and h of the vortex system of
the vanes in each cross section x = const. A method permitting an exact allowance for the boundary condi-
tions at the cylinders was also suggested in [7] for the solution of the problem of steady flow over an annular
array with h =~ 1. This method is based on the use of Fourier integrals and modified Bessel functions, For
an array with a density 7 = 1, an entrainment angle 8 = 30°, and a vane number N = 4 the coefficient of the
total force acting on a vane is Cpp = 2.2 for h = 2. In calculations by the first method for h = 20, 10, 5, and
2 we obtained Cp, = 1.7533, 1.7393, 1.7238, and 1.7073, respectively. In this case the angle of attack varied
linearly over the height of a vane from «(1) = 0.15 to a(h) = 0.05. The decrease in the coefficient of force
in the given case can be explained by the fact that, in contrast to the method for h =1, the variability of the
load in the radial direction is taken into account. It should be noted that with a considerable change in h the
coefficient of force changes little and is close to the value obtained when the boundary conditions at the cylin-
ders are exactly satisfied. In addition, a direct calculation of the radial velocities at the cylinders from all
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the vortex systems was made in the analysis of the method. These quantities did not exceed 0.01 in the exam-
ples considered. One can therefore expect that the method using reflected vortex systems also gives satis=-
factory results in a solution of the nonsteady problem.

The normal components of the velocities induced by the reflected vortex system are determined from
Eqs. (2.3)-(2.5), in which one must replace rj+6r by 1/(rj+0dr) or by hz/(ri + dr), respectively.

Now requiring that the condition of nonpenetration of the surface of the first vane be satisfied, we ob-
tain a system of algebraic equations, complex with respect to j, for determining the intensity of the attached
vortices,

AX =B, (2.6)
where A is a matrix with the elements
N-1
A= D (wfs — wiy — wiu),
n=0

i,z =1,...,M, M = N; X Ny, the quantities Willi and W;lli determine the normal velocities produced by the

reflected system; X = {I‘i} is the vector constructed from the unknown intensities of the aftached vortices;
B= {VV (rﬁl s 0ol )}-

Finding T from the system (2.6), we can calculate the nonsteady aerodynamic characteristics both for
an entire vane and for sections of it in height. Defining the pressure drop at a vane from the Zhukovskii
theorem "in small,"

pl = —pvi(rhvs (r, 6),
and an element of vane area from the equation
dS = r2y/ m? = r2drdo,

we find that the aerodynamic force acting on a vane is

. b
P=—opri{ | v,()WmE ¥ roy; (r, 6)drdd @2.7)
1 -9
or, in dimensionless form,
C,=ReC,+jImcC, = p/i1 pUzs. (2.8)

Here y.(r, §) is the intensity of the attached vortices continuously distributed over the vane surface; p is the
fluid density.

Substituting (2.7) into (2.8), we replace y«Vm? + rzidB by vy Tj, dr by 26r, and change from integrals to
finite sums. Then

M
48r Ny 2 TS
C"T:—"—I——'—— -“,‘-—,z Vm +rili'
S oL

Similarly, for the coefficient of aerodynamic force acting on the I-th cross section (I = 1,..., N;) over the
height of a vane, we have
46r|,/' m? -2 Ve

ONY 3 R,
Sll.("‘.l = 17) i-‘:‘l Vom il

Cal = —
where Cpl=Py/(0.5) p v} (r7) Sg; S; = S/rf and Sy7 = §; /x5 are the dimensionless area of avane and of its -th

band in height, respectively.

The algorithm for calculating the improper integrals entering into Eqgs. (2.4) and (2.5) has considerable
influence on the accuracy and time of the calculation. In constructing it we factor the integrands into two
parts such that one of them contains almost all the singularities and its integral is found exactly, while the
integral of the second part can be calculated by mechanical quadratures with a small error. As the first part
it is convenient to take integrands with n = 0 and x <« 1, since the singularities when the control point (rg,
9o1) lies near a horseshoe-shaped vortex are eliminated in this case. We represent the resulting integrals in
the form
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where f(x) is an integrand function without a singularity, while A > 1 is chosen in such a way that the second
integral can be neglected while making only a small error. We use the following procedure to calculate the
first integral on the right side of (2.9). We consider the indefinite integral

[¢]
y®) = | i(@adz
~A
for values of 0 assigned in the interval [—A, 2 ]. We calculate the values of the function y for a given grid
of values of the argument 6: 0, = —A + nhy (n= 0, 1,...), from the equation yp+; = yn + 0.5h{fy + f+) for

a trapezoid. Then using linear interpolation, we find the required values of the integrals at 6 = #ij;. The pro-
posed method lets us entirely eliminate repeated calculations of the integrand and thereby considerably reduce
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the computer time needed to calculate the elements of the matrix A,

3. The dlstrlbuted and total nonsteady aerodynamic characteristics of a number of annular arrays were
calculated on a2 BESM-6 computer by the algorithm presented. Since unrolling a cylindrical cross section of
the annular arrays under consideration onto a plane gives an array of plates, we compared the results ob-
tained with the data of [4]. In this case the parameters characterizing the geometry of the array and the vi-
bration process were determined at the middle radius of the annular channel: m = rycot 8 (B is the entrain-
ment angle of the array), the density of the array is 7= yv m? + er/(wro), the vane aspect ratio is A =
(h - 1)%8;, and the Strouhal number k = wiby/vy = 21w ¢vm? + r% l vy is connected with the quantity g by
the relation k = 2V m? + r% d. Here b, is the length of the chord of a vane at the middie radius of the chan-
nel.

Below we consider bending—twisting vibrations of a vane as a rigid body in the cross section r = const.
In the case of twisting vibrations relative to some center with the coordinate 6 = 6, and an angle «(t) =
eel?it the right side of the system of equations (2.6) has the form

Vilrg. 8g) = ¢ ‘

Il ~—T

— 1y [gm (0 — 8,) — 11.

m 0

where &€ « 1 is the angular amplitude of the vane vibrations.

To determine the coefficient of the nonsteady aerodynamic force acting on an entire vane or a cross
section of it in height during bending vibrations we made calculations for two twisting centers and used the
equation
191
)‘I

Cna = Cnoco Cnm

where Cpq, = Cno/a(t) is the coefficient of the normal force during twisting vibrations relative to the mid- .
dle of a vane (0, = 0); Cpp is the coefficient of force during bending vibrations in the direction of the normal
to the vane surface.

The calculations presented below were made with h = 2. In Figs. 2 and 3 we present the coefficients of
nonsteady aerodynamic forces Cng = Re Cpy + £ Im Cp o during twisting vibrations about the middie of a
vane as functions of the density T of the array for entrainment angles g = 30 and 60°, respectively. Here the
Strouhal number is k = 0.5, the phase shift is yr = 0, and the number of vanes is N = 4. In Figs. 2-6 the
dependences for the force acting on the middle cross section of the vane are shown by solid lines while those
for the force calculated for the corresponding array of plates [4] are shown by dashed lines. As seen from
these calculations, the difference between the results is slight for § = 30°; for larger entrainment angles
(B = 60°) this difference becomes important. Thus, one can conclude that the effects of the three-dimension~
ality of the flow are manifested to a greater degree with an increase in the entrainment angle.

The coefficients of nonsteady aerodynamic forces as functions of the phase shift yr between the vibra-
tions of neighboring vanes during twisting vibrations about the middle and bending vibrations are shown in
Figs. 4 and 5, respectively. The calculations were made for values of 7 = 1,8 = 30°, k= 0.5, N = 4, and
p=0¢/2(c =0,1,2,3). A comparison with the results of the plane theory shows that the maximum differ-
ence is observed for vibrations in antiphase (p = 1). This fact also follows from the calculation results pre-
sented in [5].

The nonsteady aerodynamic coefficients as functions of the Strouhal number k at g = 30 and 60° are
shown in Fig. 6. Here we took 7 = 0.5, 4 = 0, 6 = 0, and N = 4. It should be noted for g = 30° the results of
calculations by the proposed method and for an array of plates are also very close in this case, except for the
region of k = 0 where we did not observe a sharp change in the aerodynamic characteristics as in the plane
theory [4]. For g = 60° the difference in the results is considerable, especially in the region of small Strouhal
numbers (k = 0.5), while the influence of the three-dimensionality of the flow decreases with an increase in
the Strouhal number.

The values of the coefficients of the total force and of the force in the middle cross section practically
coincide in these examples.
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NONSTEADY ESCAPE OF GAS INTO A VACUUM
THROUGH A SEMIPERMEABLE SCREEN

G. I. Gannochenko UDC 533.6.011.533.697

The problem of the distribution of the parameters of a gas in a rarefaction wave during the nonsteady
escape of the gas into a vacuum through a screen, which has a hydrodynamic resistance and removes part of
the gas energy, is solved by the method of the theory of similarity and dimensionalities.

Suppose that a plane x = 0 (Fig. 1) separates a left-hand half-space x < 0, filled with an ideal gas hav-

ing the parameters pg, pg, and T, and an equation of state p = pT, from a right-hand half-space, a vacuum
1(x>0).

At some moment the gas starts to escape into the vacuum through an infinitely thin screen 2 located in
this plane which possesses a hydrodynamic resistance and removes part of the energy of the stream. The
front of a rarefaction wave 3 propagates away from the screen to the left (through the undisturbed gas} and
the boundary of the expanding gas 4 propagates to the right. The parameters of the flow in the rarefaction
wave to the left of the plane x = 0 have the index 1 while the parameters of the flow to the right of this plane
have the index 2.

We assume that the specific flow rate of gas through the screen depends on the pressure drop at the
screen in the following way:

g = &{P1y — P20}

where pj; and pyg are the gas pressures at the plane x = 0 to the left and right of the screen; @ is the coef-
ficient of permeability of the screen.

Fig. 1
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